19
20
21
22
23
24
25
26
27
28
29

33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51

52

A research publication recommendation web service using hexagonal

architecture and RAKE algorithm

INHYUP KIM, UvU, USA
NEIL HARRISON, uvU, UsA

A considerable number of research manuscripts are published every year detailing the new findings on various topics. Due to the
large number of publications, researchers spend a notable amount of time and effort in searching through various journals and
scientific database services to identify relevant publications. For lay persons interested in new information and topics, it may be
particularly more challenging to stay up-to-date on the latest findings. To reduce these issues, I propose a search-based web service
that recommends research publications to users to minimize the inconvenience of having to evaluate all possible relevant works. The
main goal of this project is to implement the microservices architecture and recommendation algorithms to provide better quality
research information to users.

In this paper, I describe to create a search-based recommendation web service using a hexagonal architecture that can increase
efficiency and scalability of the software. I also illustrate the content-based filtering using RAKE algorithm, one of the natural language
processing algorithms, to recommend research publications that are highly relevant to user’s search history and saved research paper
preference data. This service is deployed through AWS to provide users with an elastic service. It also uses DynamoDB, a NoSQL
database service provided by AWS, to dynamically store the information and data.

The results of this project show better search results than existing research search websites (IEEE, ACM and ArXiv) and provide
convenience to users that recommends research through a recommendation system. This project is meaningful because it utilizes the
software architecture, machine learning, big data, algorithm and network that I have learned in graduate studies. The applications

created for this project is a server and a client, with a total of 3500 lines of code.

Additional Key Words and Phrases: Hexagonal architecture, Recommendation Systems, Content-Based Filtering, NLP, RAKE

1 INTRODUCTION

In the past decade, the number of science and engineering journal articles and conference papers increased by 4% per
year, with over 2.6 million publications[31]. While research search engines, such as Google Scholar, have functions to
refine search preferences, researchers continue to spend a significant portion of their research time looking for the most
appropriate publications that to set a framework for their projects. There are several explanations for such difficulties in
conducting a literature review. For one, some search engines do not return satisfactory search results. Another reason
may be that the filtering function is restrictive or inconvenient to use. Even when a search engine has a feature to
save a user’s preferred topics, it is difficult to expect utilities beyond the saved preferences. The proposed search-based
service will provide search capabilities and improved user experience to replace these limitations of the search engines
currently in service.

The current project uses a hexagonal architecture, a type of microservices architecture, to design a research publication
search and recommendation service. Also, it uses RAKE algorithm to recommend more accurate search results and pub-
lications based on search keywords and each user’s saved research articles. The hexagonal architecture was introduced
by Alistair Cockburn and is also referred to as the ports and adapters architecture [8]. The hexagonal architecture,
unlike the traditional layered architecture, is designed to follow the principles of object-oriented programming by
separating the business logic from external technologies and following dependency inversions of each layer[8] [32]. The

hexagonal architecture consists of the domain and the layers. The domain is the heart of the application and responsible

Authors’ addresses: Inhyup Kim, UVU, Orem, UT, USA, 106280588@uvu.edu; Neil Harrison, UVU, Orem, UT, USA, Neil. Harrison@uvu.edu.

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

2 Inhyup Kim

for business logic, and the layers surround the domain to handle the facilitation and management of objects in the
domain model. Only ports and adapters are used to interact with the inside of the application[12]. This approach has
the advantage of implementing only ports and adapters without modification of the business logic, even if technical
details change.

Recommendation systems have become very common in recent years. They are already closely integrated into the
everyday life in video content providers (e.g., Netflix and YouTube), as well as through social media and web-based
recommendations on food, travel, shopping, and more. These recommendation systems provide convenience and
satisfaction to customers by recommending products that they would be interested in based on big data rather than
having to browse through all the options. Therefore, a recommendation system is applied to recommend research
articles that might be of an interest to users based on the user’s metadata (search history and saved data by a user) in
this project. Filtering is used to increase the accuracy of the recommendation system. A content-based filtering in this
project is a method that recommends other items that have similar content or have a special relationship to each other.
I propose to use the rapid automatic keyword extraction (RAKE) algorithm as a method of content-based filtering. The
RAKE algorithm is an unsupervised, domain-independent, and language-independent method for extracting keywords
on individual documents that measures the relative importance of words that are considered important in documents or
a specific sentence[27]. The algorithm calculates the importance of the user’s metadata (the users’ search keywords and
the title of the research paper saved by the user) and finds a combination of the most important words to recommend
the most relevant articles.

The program consists of a server and a client. The number of lines of code is 2,000 for the servers and 1,500 for the
clients. This service operates on AWS EC2, and the database uses DynamoDB. In this project, the research publication
external API used ArXiv API due to the ease of accessibility and availability.

The results of the project have established a recommendation system that is more effective than traditional search
services. I have developed a service that is easy to maintain and highly scalable using the hexagonal architecture.
This improves on accuracy of search results by analyzing key keywords and recommending papers that users may be
interested in through RAKE algorithm. The paper is organized in the following order: discussion of related work in
Section 2, description of the software architecture and implementation in more detail in Section 3, and discussion of the

project results in Section 4. Finally, the conclusion is presented in Section 5.

2 RELATED WORKS

The hexagonal architecture is described in detail in the books [32] [25]. The hexagonal architecture is a type of
microservices architecture. In [10] and [5], microservices are an alternative for developing complex and distributed
applications, solving scalability and making online services easier to maintain. Software architecture can be broadly
divided into monolithic and microservices architecture. Studies [11] and [3] compare monolithic and microservices
architectures and describe the pros and cons.

Monolithic architecture refers to a traditional architecture, in which all components of software are integrated into one
project [24]. All processes are tightly coupled and run as a single service. The advantage of monolithic is it is easy and
simple to develop and test for small projects. However, as the project grows, the code becomes cluttered and difficult
to modify because it is closely related to each other, and continuous integration and continuous deployment become
difficult.

Amazon, Netflix, LinkedIn, Spotify and other companies have evolved their applications towards a microservice

architecture [10][30]. Microservice architecture is an architectural pattern in which one large application is divided

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149

A research publication recommendation web service using hexagonal architecture and RAKE algorithm 3

into smaller units of service. Microservices architecture is becoming an alternative to traditional software development
paradigms for developing complex and distributed applications, such as building mobile applications[33] as well as
cloud platforms [13]. The advantage of microservices is that each service can be developed independently, and it is easy
to modify and maintain. It is also independently deployable and scalable, and its internal configuration is not affected by
external changes. However, the complexity of the system increases and a method of communication between services is
required. Also, because it can be vulnerable to security threats. The researches[14], [28] are being conducted on this.
The hexagonal architecture was first introduced by Alistair Cockburn[8], and these books[32], [25] point out the
limitations of the layered architecture and show how to use the hexagonal architecture. [2] and [32] show examples of
successful applications of the hexagonal architecture in Node]S and Java.

Recommendation systems have been successfully applied in several other areas, including news[6], movies[15], and
audio[29]. In [9], the authors consider content-based filtering, collaborative filtering, demographic filtering, Knowledge-
Based recommender system, and hybrid recommender system as a personalized recommendation system. Among them,
collaborative filtering and content-based filtering, which are used most successfully in the recommendation system,
were selected as candidates for this project.

Companies such as Amazon use collaborative filtering[19], a recommendation system that automatically predicts users’
interests according to taste information obtained from many users. The fundamental assumption of the collaborative
filtering approach is that the past trends of users will remain the same in the future[22]. The system is not limited to
specific user information, but it uses information collected from many users to measure similarity and recommend
items. It has the advantage of being able to give appropriate recommendations to users even if metadata is not provided.
However, collaborative filtering is not suitable for use in this project because it makes recommendations based on the
evaluation of many users, thus compromising on the individualized preferences of a user.

One of the chronic problems of collaborative filtering is the cold start[23]. Collaborative filtering can be used only when
sufficient interaction metadata between users and items is provided. When a new product or a customer is added, it
may not be possible to make a recommendation because there is not relevant information.

Therefore, this project uses content-based filtering. This method compares the features between items and recommends
other items with similar features. In this approach, an item profile is created by extracting a user’s preferences then the
item profiles are compared using natural language processing to recommend the most similar items. Content-based
filtering is a better choice when a new application is built since it can be applied using only the data available at all
stages of the system. A common strategy used in content-based filtering is to rank the most important keywords using
TF-IDF[4]. However, the RAKE algorithm is implemented to rank keywords in this project. This study[27] proves that
RAKE is faster and efficient to extract the keywords. In [26], scientific article keywords extraction was conducted using
RAKE.

3 SOFTWARE ARCHITECTURE AND IMPLEMENTATION

In this section, I discuss in depth how to implement Research Advisor, a research paper recommendation web service
that I developed. This section is divided into two subsections, and the first subsection discusses the software architecture,

and the second subsection discusses the filtering algorithm, the RAKE algorithm.

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

188

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

206
207

208

4 Inhyup Kim

3.1 Architecture

The hexagonal architecture, also known as the port and adapter architecture, successfully separates the business logic

from the external components.

REST API External API
Adapter Adapter GIE.

\/ N Domain v \/
[Pot | [Pot |
\ ;] y,
o \ Business / o
Logic \ -

Port

Database
Adpater

—
DB

Fig. 1. The hexagonal architecture used in the project

In Figure 1, the hexagonal shape represents the layers between components. Each component is independent and
communicates with other components in different layers only through ports and adapters. The domain inside the
hexagon is responsible for the recommendation system, which is a business logic of this application. The recommendation
system will be discussed in more detail in Section 3.2.

The port is a component that connects a domain and the outside of the domain. The interfaces are defined on the port
to interact multiple services. These interfaces invert dependencies so that higher-level components such as domain, do
not depend on lower-level components[25].

Each adapter provides its own services. The REST API adapter located on the left side of Figure 1 is an inbound
adapter that forwards user requests to the domain. In this project, the REST API adapter consists of user controller
and researchpaper controller. The user controller is responsible for creating and modifying the user data, and the
researchpaper controller delivers commands to request the research publications. The external API adapter and database
adapter, located on the right, are outbound adapters and are responsible for performing tasks requested by the domain.
The external API adapter connects the API calls requested by the domain to the API service. The database adapter only
works with databases. Database operations such as creation, deletion, and modification requested by the domain are

processed by calling the database through the database adapter.

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

A research publication recommendation web service using hexagonal architecture and RAKE algorithm 5

The application of this project is deployed through Amazon EC2. I built EC2 for a server and a client and use t2.micro,
1GB ram, 6 CPU and 30GB hard disk. Amazon EC2 provides an elastic virtual cloud computing environment and an

elastic IP address to make it easily accessible from the web[21].

LD AWS Cloud
B a
88_. . D.I:D peman
Users Route 53 API| Gateway Lambda DynamoDB
handler
Primary Ports Secondary
adapters adapters

a D

Research APls

H

Users pass commands through APl Gateway.

Lambda handlers are used to asynchronously execute commands received from APl Gateway.

In the Domain, data called through multiple adapters is resolved using business logic.

[I~

Data is passed to the application by calling external research APIs from the intemet

DynameDB is used to store user profiles and recommended articles.

Fig. 2. The architecture on AWS

The users’ requests that passed through the API Gateway are forwarded to the domain asynchronously from the
lambda handler. The domain executes the filtering algorithm that will be detailed in Section 3.2. The external API is
the ArXiv API to send a research article request call and return the result. ArXiv has more than 2.1 million scientific
and technical papers, which are constantly updated and easily accessible. Figure 2 shows that the database used AWS
DynamoDB to store user information. Amazon DynamoDB is a fast, flexible NoSQL database service for all applications
of any size that consistently requires less than 10 milliseconds of latency. In addition, it is a fully managed cloud
database that stores data in the form of key-value, which makes fast to read data and increased scalability. Amazon
DynamoDB features a flexible database schema. The data items in the table do not have to have the same number of
attributes. Because the project uses various properties such as string, datetime, list, and dictionary, any information

that is not easy to implement in RDBMS can be easily organized into a single table in the DynamoDB.

3.2 Recommendation system

The most important and the core feature of the application is the domain since the hexagonal architecture follows

a domain-driven design[16]. The domain refers to the problem area that the software wants to solve, and the core

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

279

281
282
283
284

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

306
307
308
309
310
311
312

6 Inhyup Kim

problem in this project is the research paper recommendation system. The domain of this application is illustrated in

the following figure.

Paper

Search AF

API Interface Recommendation
System

Paper
Save DB

Fig. 3. The domain in the hexagonal architecture

In Figure 3, the hexagon frame represents the domain and the squares represent the components. The arrows indicate
how the components interact. When a user interacts with the system through the interface, such as searching for or
saving a research paper, the data sent by the user is stored in the database. The recommendation system makes API
calls asynchronously by extracting the keywords through the natural language processing based on this stored data.
The system creates a list of recommended papers using the response of API calls.

Natural language processing (NLP) is a branch of artificial intelligence that uses machine learning to process and
interpret text and data[7]. The recommendation system of this project uses content-based filtering because it needs
to identify the properties of a research paper and recommend it to the users. Since the metadata of a research paper
consists of texts, selecting meaningful information among these texts is the key. Therefore, this application extracts
keywords from the research papers through NLP and utilizes these extracted keywords to recommend the most similar
research papers. Rapid automatic keyword extraction (RAKE) algorithm is used as the filtering algorithm. The algorithm
excludes words that are only grammatically significant and takes important words in the corpus. In the RAKE algorithm,
corpus is first filtered out with a stop word list such as ’a’, ’and’ and ’is’ or other words with minimal lexical meaning.
Stop words are generally considered uninformative or meaningless and are not included in various text analyses. For

example, if a user enters the phrase I like to eat an apple and a banana’, ’T’, ’like’, ’to’, ’an’, ’a’ and "and’ are removed

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

A research publication recommendation web service using hexagonal architecture and RAKE algorithm 7

because those are included in the list of stop words. It is based on the expectation that these stop words are used too

frequently and extensively to help users in analysis or search operations[27]. The words ’eat’, *apple’ and ’banana’ are

candidate keywords because they convey meaning. The candidate keyword group is then established using parameters

such as the minimum number of strings that can be considered as a word, the maximum number of words included in

the phrase, and how many times it appears in the entire document. The RAKE algorithm considers the co-occurrences

of these filtered candidate words to be considered important words and measures their scores in the following way.

®

@

®)

4)

Count the frequency of each word.

For example, freq(Apple) = 7 and freq(Banana) =5 in table 1. In this case, the word ’Apple’ has higher score
because ’Apple’ co-occurs in the document more than 'Banana’

When individual words are bound to a candidate group in the form of a phrase, the degree is calculated by
adding the frequency of each word to the number of times it is used with other words.

degree(Apple) =7+2+5+1=15

degree(Banana) =5+5+1+1=12

Calculate the ratio of (1) and (2). The ratio of a phrase is calculated by adding the value of the ratio of each
word included in the phrase. This ratio is very important to create a keyword list.

ratio(Apple) = 15/7 ~ 2.14

ratio(Banana) = 12/5 ~ 2.4

ratio(AppleBanana) = 159/35 ~ 4.54

In this scenario, the word combination ’Apple Banana’ has the highest score and is more likely to be a candidate
word.

One-third of the total number of individual words is regarded as the total number of keywords on the list. For

example, if there are 28 words in total, 28/3, and about 9 words correspond to meaningful keywords.

Apple Chicken Pants Banana Car Hat Pizza Bike Train

Apple 7 2 5 1
Chicken 5 2 4 2
Pants 2 6 5
Banana 5 5 1 1
Car 2 6 3 2
Hat 5 5
Pizza 4 1 4
Bike 1 2 3 5 2
Train 1 2 2 3

Table 1. Example of RAKE matrix

365
366
367
368
369
370

389
390
391
392
393

394

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412

8 Inhyup Kim

The RAKE algorithm proves excellent performance in extracting the essential keywords, but there is a drawback to
applying it to this project. The RAKE algorithm performs better on long text than on short titles because keywords
must occur twice in the same order within the document. Because users usually do not enter an extensive list of search
words, almost all of the search words except for the stop words are recognized as keywords. Therefore, I propose to
use a combination of these keywords to further improve the performance of the recommendations. First, the system

finds the the case containing all n keywords. Then, it finds the combinations of words by decreasing r by 1 until » equals 1.

The binomial theorem states that

> ('r‘)xf = (1+x)" M

Putting x = 1 gives

509+

Z (") =2" -1 3)
r

This approach not only finds papers containing all the keywords, but also recommends related papers through the
keyword combinations. However, this creates a bottleneck problem that the number of API calls increases exponentially
as the number of keywords increases. Equation (3) describes how the number of API calls increase by 2" as the keyword
increases by n. When all cases of the combination are called by API, a total of 2" — 1 calls are made. Therefore, the
number of API calls and the amount of data called at a time should be restricted to solve this issue.

At first, the appropriate number of data should be set when requesting an API call. A large set of returned results can
cause a significant load on the server and require a long time to render. According to the ArXiv API manual[1], 30000
API calls take a little over 2 minutes or more. This means it returns approximately 250 data per second. Therefore, the
250 data are returned when making an API call.

According to [20], slow system response times lead to user dissatisfaction, which is seen in a study[17] that states that
users report increased level of intolerance around the 12-second response time. Theoretically, it was expected that one
API call takes one second, but the response time is within 12 seconds when 7 API calls are requested as shown in Fig 4.
A slight delay occurred as duplicate data were deleted among all the returned result data.

As shown in Figure 4, as the number of API calls increases, the returned result data increases. However, the API called
the later returned results using only one or two keyword combinations, not all keyword combinations, resulting in a
decrease in the relevance to the keyword entered by the user.

Based on these observations, the program uses 7 API calls to return at most 12 seconds response time. Therefore, the

program can consistently return over 1000 research paper data in a given time.

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

459
460
461
462
463
464
465
466
467
468

A research publication recommendation web service using hexagonal architecture and RAKE algorithm 9

1400 4
16
14 1200
3z 12 £ 10001
5 g
£ 5
F 104 e
v S 800
g £
2 8 2
& 2 600
6 =
400
4]
21 200 4
0 2 3 6 8 0 2 4 5 8
The number of API calls The number of API calls
Fig. 4. Graph to response time per API call Fig. 5. Graph to the number of data per API call

The extracted keywords using the RAKE algorithm are asynchronously stored in the database in the form of a map.
When a user enters search words, the system increments the value corresponding a keyword to track the user’s keyword
history. Also, users can save the research papers. The paper saved by the user are considered to have higher priority
than the searched keywords. Therefore, the keywords extracted from the title of the research paper adds a weight of 7
to the search history.

The two message sequence diagrams below provide a more detailed explanation of how the logic works.

User Client Server DB AP

}----—--{

Search keywords

Send keywords
» Execute filtering
algorithm
L Store keywords
> Requst APl call using
U keywords
Response the results
Return the results < |
Dizplay the results

|

|

Fig. 6. The search message sequence diagram

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

489
490
491
492
493
494
495
496
497
498
499

500

502
503

505

506

508
509

511

512

514

515

517

518

520

10 Inhyup Kim

User Client Server DB API

| E——

Login

h J

Send login request

T

h J

Validate login info

h

Login success

Y

Request fo get saved
papers and keywords

h

Response the results

Execute filtering
[algorithm

Response the resulis J

Y

Requst AFI call

Return the results B

A

Display the results

Fy

o

Fig. 7. The login message sequence diagram

4 PROJECT RESULTS

A sample of this project is available at http://ec2-44-240-38-221.us-west-2.compute.amazonaws.com/. I evaluate the

two aspects of this project: soft architecture and filtering algorithms.

4.1 Software Architecture

The hexagonal architecture, which compensates for the weaknesses of the existing layered architecture, shows great
advantages in program scalability and maintenance. Each component of the system is independent, which means a

change in one component does not affect the other. As such, the hexagonal architecture makes for a reliable service.

4.2 Filtering Algorithm

The RAKE algorithm showed the performance of selecting keywords within 4 milliseconds. It helps to improve the
search speed by effectively and quickly identifying keywords even in the corpus.

Normalized Discounted Cumulative Gain (NDCG) is used as an indicator to evaluate the performance of the recommen-
dation algorithm[18]. NDCG is an indicator that evaluates the performance by giving more weight to the order of the
recommendations and is especially useful in situations where a higher ranking list is significantly more important than
a lower ranking list. Cumulative Gain (CG) is the sum of relevance scores. The relevance score is a score that indicates
how much a user prefers each recommended item. This project focuses on the association between the keywords and

the research titles. Relevance score is set on three levels: completely relevant, somewhat relevant, and not relevant.

http://ec2-44-240-38-221.us-west-2.compute.amazonaws.com/

521

522

524
525

526

561

569

A research publication recommendation web service using hexagonal architecture and RAKE algorithm 11

n
CGp = Z relevance; 4)
i=1

Discounted Cumulative Gain (DCG) originates from CG. The lower the order of the recommended items, the larger
the denominator, so that the overall DCG is less affected. However, there is a limitation in that accurate performance

evaluation is difficult when the number of recommended items between domains is different.

relevance;
DCG,, =
" Z log, (i + 1) ®)

NDCG is the application of normalization to DCG to compensate for the limitations of DCG.

NDCG, = 255 ©)
IDCG
IDCG is the DCG value when the best recommendation is made. In conclusion, NDCG is an index indicating how accurate
the recommendation list of the current model is compared to the most ideal combination of the recommendations. By
normalizing the DCG value, NDCG has a value between 0 and 1.
The DCG scores were measured for the top 100 results of each information source, IEEE Xplore (IEEE), ACM Digital
Library (ACM), ArXiv (ArXiv) and this project application (ResearchAdvisor). The average NDCG scores were obtained

using 5 keywords for each information source. Table 2 shows the NDCG score of each information source.

Research search service NDCG Score

IEEE 0.75

ACM 0.67
ArXiv 0.58
Research Advisor 0.77

Table 2. NDCG score of research search service

In comparison to the traditional search engines, the results obtained from in this project application demonstrate higher
NDCG scores in favor of the Research Advisor. However, it is hard to argue that the scores in the table 2 is valid. First
of all, the number of sample data is too small to produce meaningful results. If the minimum sample size criterion is
not met, the information is insufficient to correctly judge results. It is possible to make errors that the result value
is changed by another variable or that it can judge the results are different even though data is same. It is important
to determine the appropriate sample size for the purpose of the study, because too large a sample size would be an
excessive waste of resources, and on the contrary, too small a sample size to produce significant results would be a
waste of effort. There is no clear sample size that is universally applicable in all situations, but this study did not proceed
with an appropriate sample size, so it is insufficient to prove the validity of the results. There is also a possibility that
the results of the experiment may have been distorted due to the biased selection of keywords. Therefore, it is necessary

to conduct research by selecting more keywords data fairly to obtain more reasonable and validity results.

580

592

594
595

597
598

600
601
602
603
604
605
606
607
608
609
610
611
612
613

614

616
617
618
619
620
621
622
623

624

12 Inhyup Kim

Despite the possibility of errors in these scores, the significance of the scores in the table 2 is that they outperformed
other search engines in certain areas. As an example, if the search words were entered into the ArXiv search engine to
find a paper called 'Network Data’, the user’s desired result is not displayed top of the list. When searching for "Network
Data’ on the Research Advisor, the desired result is displayed on the top.

There were a few challenges during the development of this project. A bottleneck during the data transference was ex-
pected. To prevent this, I attempted to download and preprocess the entire ArXiv database to reduce the network latency.
Contrary to my expectation, the data preprocessing was more expensive, time intensive, and resulted in loss of a notable
amount of important data. ArXiv provides the entire data as a Json file (https://www.kaggle.com/datasets/Cornell-
University/arxiv). In the process of serializing the Json file, the memory is overflowed, and to prevent this, the need
to delete the abstract of the research paper came to the fore. This was recognized to be a huge loss in conveying
information to users. Also, retrieval of information performed worse than API calls. There was a limitation because it
uses only title information to search. Moreover, a major modification of the algorithm was required in order to catch
more detailed information than when calling the APL

For these reasons, I looked for ways to make the API calls faster. To solve the bottleneck of API calls, I decided to
request an appropriate amount of data at a time and exclude any combination of keywords that can lead to results that
are too broad. With these changes, the result is returned within 1200 milliseconds at most. I also included a loading

image to indicate to the user that the system is processing.

5 CONCLUSION

Recommendation systems reduce the effort required for users to find research papers related to topics of interest. The
problems with current search engines serving this function are that the search results are not satisfactory, they are not
easy to use, and the stored data is not useful. As a way to solve this problem, I proposed a recommendation system
using a hexagonal architecture, implemented an application, and deployed it to Amazon EC2.

Hexagonal architecture is designed to remove the dependencies of the existing layered architecture and increase
scalability. The RAKE algorithm is the core filtering algorithm of this project for implementing the recommendation
system. It measures importance as a ratio of frequency to degree based on co-occurrence of keywords in the corpus.
However, there was a disadvantage that the sentence length was not long enough to use the RAKE algorithm. I solved
this problem through combinations of words. In addition, the algorithm is modified to limit the API calls to reduce the
latency so that the wait time is shortened after requesting a command.

This project can further develop are in the following areas: (1) filtering algorithm and (2) using multiple APIs. Since the
RAKE algorithm was published in 2010, many efficient filtering algorithms have been developed since then. I expect
to produce better results in short sentences using improved filtering algorithms. I also think it is possible to derive
improved search results by connecting more research APIs. Since the data provided by ArXiv is limited to science and
technology fields, it is difficult to find papers related to the humanities and sociology. If other APIs can be connected,
the program’s scalability can be improved and more services can be provided.

Although this project is less than the number of codes required, it can be considered a master’s project. The fact
that the length of the code is not long proves that the application is efficiently designed. In addition to implementing
the application, I conducted comparative studies with other services by objectively analyzing them using evaluation

indicators of recommendation systems such as NDCG. This recommendation service shows the higher NDCG score than

https://www.kaggle.com/datasets/Cornell-University/arxiv
https://www.kaggle.com/datasets/Cornell-University/arxiv

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

676

A research publication recommendation web service using hexagonal architecture and RAKE algorithm 13

existing services has been built. This verifies this application is effective and productive. In addition, this application is

practically usable since it is deployed on the web using AWS cloud services. I applied the software architecture, NoSQL,

machine learning, filtering algorithms, and cloud services I learned in graduate school to one project. Also, the issues

that I encountered while developing this application have been overcome by researching several papers.

6 ACKNOWLEDGMENTS

Special thanks to Dr. Neil Harrison for his overall supervision and advice. I would also like to thank Ken Jensen for his

advice and direction on AWS.

REFERENCES
[1] [n.d.]. ArXiv APIuser’s Manual. https://arxiv.org/help/api/user-manual
[2] Yura Abharian. 2021. MECHANISMS FOR IMPLEMENTING HEXAGONAL ARCHITECTURE IN NODE JS. Global Prosperity 1, 3-2 (2021), 41-48.
[3] Omar Al-Debagy and Peter Martinek. 2018. A comparative review of microservices and monolithic architectures. In 2018 IEEE 18th International
Symposium on Computational Intelligence and Informatics (CINTI). IEEE, 000149-000154.
[4] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999. Modern information retrieval. Vol. 463. ACM press New York.
[5] Elyas Ben Hadj Yahia, Laurent Réveillere, Yérom-David Bromberg, Raphaél Chevalier, and Alain Cadot. 2016. Medley: An event-driven lightweight
platform for service composition. In International Conference on Web Engineering. Springer, 3-20.
[6] Krishna Bharat, Tomonari Kamba, and Michael Albers. 1998. Personalized, interactive news on the web. Multimedia Systems 6, 5 (1998), 349-358.
[7] KR1442 Chowdhary. 2020. Natural language processing. Fundamentals of artificial intelligence (2020), 603-649.
[8] Alistair Cockburn. 2005. Hexagonal architecture. The Pattern: Ports and Adapters (2005).
[9] Debashis Das, Laxman Sahoo, and Sujoy Datta. 2017. A survey on recommendation system. International Journal of Computer Applications 160, 7
(2017).
[10] Paolo Di Francesco. 2017. Architecting microservices. In 2017 IEEE International Conference on Software Architecture Workshops (ICSAW). IEEE,
224-229.
[11] Konrad Gos and Wojciech Zabierowski. 2020. The comparison of microservice and monolithic architecture. In 2020 IEEE XVIth International
Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). IEEE, 150-153.
[12] Jesse Griffin. 2021. Hexagonal-Driven Development. In Domain-Driven Laravel. Springer, 521-544.
[13] Dong Guo, Wei Wang, Guosun Zeng, and Zerong Wei. 2016. Microservices architecture based cloudware deployment platform for service computing.
In 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE). IEEE, 358-363.
[14] Abdelhakim Hannousse and Salima Yahiouche. 2021. Securing microservices and microservice architectures: A systematic mapping study. Computer
Science Review 41 (2021), 100415.
[15] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. 1999. An algorithmic framework for performing collaborative filtering. In
Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. 230-237.
[16] Benjamin Hippchen, Pascal Giessler, Roland Steinegger, Michael Schneider, and Sebastian Abeck. 2017. Designing microservice-based applications
by using a domain-driven design approach. International Journal on Advances in Software 10, 3&4 (2017), 432-445.
[17] John A Hoxmeier and Chris DiCesare. 2000. System response time and user satisfaction: An experimental study of browser-based applications.
(2000).
[18] Kalervo Jarvelin and Jaana Kekéldinen. 2017. IR evaluation methods for retrieving highly relevant documents. In ACM SIGIR Forum, Vol. 51. ACM
New York, NY, USA, 243-250.
[19] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet computing 7, 1
(2003), 76-80.
[20] Fiona Fui-Hoon Nah. 2004. A study on tolerable waiting time: how long are web users willing to wait? Behaviour & Information Technology 23, 3
(2004), 153-163.
[21] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Thomas Fahringer, and Dick Epema. 2009. A performance analysis of EC2 cloud
computing services for scientific computing. In International conference on cloud computing. Springer, 115-131.
[22] Weike Pan and Li Chen. 2013. Cofiset: Collaborative filtering via learning pairwise preferences over item-sets. In Proceedings of the 2013 SIAM
international conference on data mining. SIAM, 180-188.
[23] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. 1994. Grouplens: An open architecture for collaborative filtering
of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work. 175-186.
[24] Chris Richardson. 2014. Pattern: monolithic architecture. Posjeéeno 15 (2014), 2016.
[25] Chris Richardson. 2018. Microservices patterns: with examples in Java. Simon and Schuster.

https://arxiv.org/help/api/user-manual

677
678
679
680
681
682
683
684
685
686
687
688
689
690

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

14

[26]

[27]

[28]
[29]

[30]

[31]

[32]
[33]

Inhyup Kim

Komang Rinartha and Luh Gede Surya Kartika. 2021. Rapid Automatic Keyword Extraction and Word Frequency in Scientific Article Keywords
Extraction. In 2021 3rd International Conference on Cybernetics and Intelligent System (ICORIS). IEEE, 1-4.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic keyword extraction from individual documents. Text mining: applications
and theory (2010), 1-20.

Chaitanya K Rudrabhatla. 2020. Security Design Patterns in Distributed Microservice Architecture. arXiv preprint arXiv:2008.03395 (2020).
Upendra Shardanand and Pattie Maes. 1995. Social information filtering: Algorithms for automating “word of mouth”. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 210-217.

Poonam B Thorat, Rajeshwari M Goudar, and Sunita Barve. 2015. Survey on collaborative filtering, content-based filtering and hybrid recommendation
system. International Journal of Computer Applications 110, 4 (2015), 31-36.

Karen White. 2019. Publications Output: US Trends and International Comparisons. Science & Engineering Indicators 2020. NSB-2020-6. National
Science Foundation (2019).

Eberhard Wolff. 2016. Microservices: flexible software architecture. Addison-Wesley Professional.

Yixue Zhao and Nenad Medvidovic. 2019. A microservice architecture for online mobile app optimization. In 2019 IEEE/ACM 6th International
Conference on Mobile Software Engineering and Systems (MOBILESoft). IEEE, 45-49.

USER’S MANUAL

Main page
one -t s x| T G
< C A Notseaure | ec2-44-240-38-221 us-west-2computeamazonaws.com wx » 0@ :
Research Advisor Create Login
1] Q
© e upassaose summry

If you connect to http://ec2-44-240-38-221.us-west-2.compute.amazonaws.com/, user can see the main page as above.

The main page provides the following features: (1) search research papers, (2) create account, and (3) login account.

http://ec2-44-240-38-221.us-west-2.compute.amazonaws.com/

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

A research publication recommendation web service using hexagonal architecture and RAKE algorithm

1 Creae - Rsearch Adisor

€ > C A Notsscure |

1 Crete - Research Advir

€ 5 C A Notseare

+

x

+

Research Advisor

Register

Email
—crmai.com

password

LikedCategory

Computer Science

Back to Home

©2022-

Research Advisor

Register

email
G gmailcom
Password

LikedCategory

Computer Science
Computer Science

Economics.

Electrical Engineering and System Science
Mathmatics

Astrophysics
Quantitative Biology
Quantitative Finance
Statistics

© 2022 - Research Advisor

Create account

Create Login

Create Login

On the create account page, set email address, password and pick preferred category from the list. Then click the

Create button.

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

16

1 Logi - Reseach Advisor x o+

€ 5 C A Noseare

Research Advisor

Login

Email
. @20 mail com

Password

Back 10 Home

©2022 - Research Advisor

Login account

Create Login

On the login page, enter your email and password. Click the Login button.

Main page after login

1 Home age- Resern Adisor x|
€ 5 C A Notsecus | 24424038221 usavest 2compute amszonavs.com
Research Advisor G gmail com Logout
e a
Upttea
© Tite ote summary save
2105015472 Hgny 1162021 s @
59651 A which harms the business. Therefore.
Mcelog-based Data unetrr the memor mstimporant
However, or he memary falure precicton n e producton ystem
Learing s necessary huge dat
postive and ofthe aigorthm. Ths
paper compares can brng. The
contesants
Coves
1910086631 Machne Leaming 10182019 y ey
Systems for Highy- 11:59.00 but hars-t-atanfactors. ow atency an low cos. Unforunately,acheving o latency and ow cost s very
Osvbuted and Rapay- Pl g unen M. depends on
Growing Data mobie phones he vork) Such

191209362v1 Robust Mull-Output
Leaming wiin Highly

121192019
50327 P11

For example,

Wide-area network bandwiatn, leading to pronibtively high latency and high cost. I this dissertaton, we
improved
magniuce by aigornms,
it . We
First, we design a system that provides both low-atency and low-cost ML sexving (inferencing) over large-
Scale and contnuousy-growing datasets, Such as videos. Second, we buld a system that makes ML training

over Thid, we present a fst detaled
study and problem: ML training .
oG cameras

Tabels of il "
observed crowd-sourcing ana

Machines

into an imputation
information, oasedon
n orderto take Inwhicn e

i Inde=d, e show nat 2 simple

effciently features and labels are
st ranc tasets, with

Inhyup Kim

After logging in, it provides the following features: (1) view updated research papers last 30 days of recommendations

based on the keywords they searched and papers they have saved (2) edit user’s profile, and (3) save a research paper to

profile.

833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

A research publication recommendation web service using hexagonal architecture and RAKE algorithm 17

View recent published research articles

1 Home Page - Research Advisor X

€ 5 C A Notsecure | ec244-240.38.221.us-west-2 computeamazonaws.com

Research Advisor

I 2railcom Logout

The Effects of Data Qually on Machine Learning Performance [11972022]

pment of relable machine learing systems [11/972022)

Willve run out of data? An analysis of the imits of scaling datasets in Machine Leaming [10/262022]

Modular machine leaming-based elastoplasticty: generalizaton in the context of imied data [10/16/2022]

Data Banznat: A Robust Data Valuation Framevork for Machine Learming (10/2212022]

‘Comparison of Data Representatior

New data

Machine Learming Architectures for User 0

on Amtrary Motion Sequences [1117/2022]

attacks on machine leaming classiflers for Mobile exTralion [10/2012022

Workioad Simiarity Analysi using Machine Leaming Techniques [10/2512022]

Performance Serverless

for Machine L

A 1011912022

Resource Consirained Vehicular Edge Federated Leaming wih Highly Mobile Connected Vehicles [10/2712022]

Muti-venicie Confict Resolution in Highly Consirained Spaces by Merging Optimal Control and Reinforcement Leaming [11/1012022]

earch e

D e

Highly Effcient Memory
Fallure Predicton using
Meelog-based Data
Mining and Machine
Leaminy

1910.08663v1

Machine Learing
Systems for Highly-

Updated
Date

Sr62021
5:3851AM

101872019
115900
P

frolled Feature Selecton for Ufrahigh Dimensional and Highly Correlated Feature Space Using Deep Leaming (11112022)

summary save

In the data center, can'eas
e server and even the entre infomaton technology INFastructure, which harms the business. Therefore,
‘whether the memory fallure can be accurately predicted in agvance has become one of the most imporiant
issues 1o be studed

s necessary ang
siive andat of the aigorthm. This
paper
single model we proposed won the f0p 14tn In totne
25m Ittakes o pas while most of the other contestants'
Solution need more than 3 hours. Codes has
P oy largely influenced by wo crfcal
factors: low Unfortunately, 9 and low costis very.
are and rapidly growing (e 9. data
collected e wort).

For example, when

When a user clicks the view from the previous step, the user can see the last 30 days of published papers according

to the user’s preference.

1 Homa Page - Ressarch Adisor x|+

Save a research paper

€ 5 C A Notsecurs | 24424038221 us-west2computeamszonaws.com
Research Advisor i com Logout
carch e a
Upastea
o it Date Summary save
19112517 Hexagonalimage 3182021 Inspiedby rexagonal the context of machine
Processig n 112186 o combine
ou based on
Learning: Concepion of processing systems of recorging
e anumber o key
syninesis of
Leaming Framework hexagonal image processing flameork,call Hexnet, i processing steps of exagonal mage
‘ranstormation, and dependent meihocs. created
hes of hexagonal e
neural i ased
ako called H.ONN, ransforming
cassica squar atce based dala sfs o thei hexagona represenalion, ey can also resul ina
wellas fesut in
210097301 Eficient Machine- 101182022 Errors -
01618 the o .
orHeawy Hexagonal Al 0L techniaues. or exampie
asce neural networks In i work e frstpropose an L based decoder and show that ths decoder can decode
heauy hexagonal code ffcint,in Lerms of e values of Ieshold and pseudo-Nesho, for varous noise
models. e show tht ihe proposed ML based decoding method achieves S1Sim 58 imes higher values of
Nex.
by whicn ciass. We
obtai 2 quacraticreciction i the rumber of emor classes for both b fip and phase fip ertors, hus
achieving a futher improvement o Ssim 141%S inthe treshold o ver the basic ML decoder. A novel
tecnnique or o
proposed, uhich s empi e
205148601 Het Dats 5292022 Todays computing ' crus g
Centic Archiectures for 1.43:17 PM GPUs. at

Mosem Data-Intensive

Learning and Databases

Unfortunately, s data movement s 2 maj i

applcations 5 processing-in-memory (M), where the cost o gata movement {0 main memory s
reduced by placing computation capabiltes close to memory. Naively empioying PII to accelerate data-
consirats PIM substiales

Impose. Therefore, 3 Pl aigoriims 1o improve
) appl appiication domains; and (i)
mobik systems, We snowcase

he benefts of Pardvare in 2 wa the PIM

paradig for two (1) machine learning o -

When a user clicks the save button, the research article is saved to the user’s profile page.

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

936

18

Profile page

15 ot et x|
<« C A Notseaure Jser/Profile
Research Advisor
Profile
emai

—cmai com

Password
I

LikecCategory

Computer Science

19111125147 Hexagonal Image Processing i the Contex! of Maching Learning: Conceplon of a BiokogicalyInspired Hexagonal Deep
Leaming Frameork

221009730v1 Effcient

2205.14864v1 Het for . Case Studies in Machine Learning and
Databases

2105.04547v2 Highly EMicient Memory Failre Predicton using Mcelog-based Data Mining and Machine Leaming

2003.04915v1 Managing Data Lineage of O&G Machine Leaming Models: The Sweet Spot for Shale Use Case:

Backto Home

©2022 - Resear

nyupasso@gmailcom Logout

Updated Date Remove

sz s [©] @

P
wonsaz 01614 @]
Al E
P]

501612021 5:38:51 AM

3110/2020 6:10:16 PM @

Inhyup Kim

The Profiles page provides the following features: (1) a user can change the category he or she is interested in, (2) a

user can initialize the search history. (3) a user can remove saved research articles.

	Abstract
	1 Introduction
	2 Related Works
	3 Software Architecture and Implementation
	3.1 Architecture
	3.2 Recommendation system

	4 Project Results
	4.1 Software Architecture
	4.2 Filtering Algorithm

	5 Conclusion
	6 Acknowledgments
	References
	A User's Manual

